Earth Interactions Interannual Temperature Events and Shifts in Global Temperature: A “Multiwavelet” Correlation Approach
نویسندگان
چکیده
For the purpose of climate signal detection, we introduce a method for identifying significant episodes of large-scale oscillatory variability. The method is based on a multivariate wavelet algorithm that identifies coherent patterns of variation simultaneously within particular ranges of time and periodicity (or frequency) that may vary regionally in the timing and amplitude of the particular temperature oscillation. By using this methodology, an analysis is performed of the instrumental record of global temperatures spanning the past 140 years. The duration of an “episode” is chosen to correspond to 3–5 cycles at a specified oscillation period, which is useful for detecting signals associated with the global El Niño/Southern Oscillation (ENSO) phenomenon. To confirm the robustness of signals detected in the earliest, sparse data (only 111 5° longitude by 5° latitude grid points are available back to 1854), we performed multiple analyses overlapping in time, using increasingly dense subsets of the full (1570 grid point) temperature data. In every case, significant interannual episodes are centered in the 3–7 year period range corresponding to the conventional band of ENSO-related variance and describe intervals of quasi-oscillatory variability of decadal-scale duration. These episodes consist of a sequence of one or two warm and cold events with sea surface temperature fluctuations in the eastern tropical Pacific of amplitude ±0.6°–1.1°C. Each episode includes one or more historically prominent El Niño events. The signals are characterized as significant, however, by virtue of their global-scale pattern of temperature variations as well as their oscillatory pattern in time. The 1920–1940 interval of increasing global temperatures was bracketed by oscillatory
منابع مشابه
Statistical Analysis of Relationships between Monthly Maximum Temperatures in Iran and Global Mean Land-Ocean Temperature Anomalies
Global warming and the meaningful relationship between temperature and precipitation changes over different areas of the earth with temperature increment of the earth, are considered as the most important patterns of this century’s climate changes. Today, there is debate over climate change and global temperatures increasing. Damaging effects of this phenomenon on the planet is one of the most ...
متن کاملA re-evaluation of the coherence between global-average atmospheric CO2 and temperatures at interannual time scales
[1] Frequency-dependent coherence between atmospheric CO2 and historical temperatures reveals climate feedbacks within Earth’s carbon cycle. Coherence between interannual fluctuations in global-average temperature and atmospheric CO2 has changed over time. Since 1979, at Mauna Loa and other observation sites, interannual coherence exhibits a 90 phase lag that suggests a direct correlation betwe...
متن کاملSpatial analysis of climate change in Iran
Introduction Climate change is the greatest price society is paying for decades of environmental neglect. The impact of global warming is most visible in the rising threat of climate-related natural disasters. Globally, meteorological disasters more than doubled, from an average of forty-five events a year to almost 120 events a year (Vinod, 2017). Climate change refers to changes in the distr...
متن کاملEffect of black surfaces to increase the average surface temperature of the earth: A global warning!
Gradual increase of the Earth's surface temperature can cause many significant changes on the climate of our planet. This problem is progressively increasing. One of the main reasons for this phenomenon is the absorption of the Sun's energy and lack of proper reflection of emissions due to man-made activities, one of which is the increase in black surfaces. In this descriptive and cross-sectio...
متن کاملEFFECT OF THE NEXT-NEAREST NEIGHBOR INTERACTION ON THE ORDER-DISORDER PHASE TRANSITION
In this work, one and two-dimensional lattices are studied theoretically by a statistical mechanical approach. The nearest and next-nearest neighbor interactions are both taken into account, and the approximate thermodynamic properties of the lattices are calculated. The results of our calculations show that: (1) even though the next-nearest neighbor interaction may have an insignificant ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999